‘Mirror model’ gives separation of convolutive mixing of PNL mixtures

نویسندگان

  • D. Vigliano
  • A. Uncini
چکیده

The proof is given that the so called ‘mirror model’ as demixing model is able to recover original sources after non-trivial mixing. The issue explored is the capability to separate sources, in a blind way, after the convolutive mixing of post nonlinear (PNL) mixtures. The strictness of that kind of mixture produces non-trivial problems in separating signals without any adequate assumption on recovering architecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general approach for mutual information minimization and its application to blind source separation

In this paper, a non-parametric “gradient” of the mutual information is first introduced. It is used for showing that mutual information has no local minima. Using the introduced “gradient”, two general gradient based approaches for minimizing mutual information in a parametric model are then presented. These approaches are quite general, and principally they can be used in any mutual informati...

متن کامل

An information theoretic approach to a novel nonlinear independent component analysis paradigm

This paper introduces a novel independent component analysis (ICA) approach to the separation of nonlinear convolutive mixtures. The proposed model is an extension of the well-known post nonlinear (PNL) mixing model and consists of the convolutive mixing of PNL mixtures. Theoretical proof of existence and uniqueness of the solution under proper assumptions is provided. Feedforward and recurrent...

متن کامل

Flexible ICA solution for nonlinear blind source separation problem - Electronics Letters

Presented is a new architecture and a new learning algorithm that are exploited to resolve the blind source separation problem under stricter constraints than those considered to date. The mixing model that is assumed is an evolution of the well-known post-nonlinear (PNL) one: the PNL mixing block is followed by a convolutive mixing channel. The flexibility of the algorithm originates from the ...

متن کامل

An automatic method for separation and identification of Biomedical Signals from Convolutive Mixtures by Independent Component Analysis in the Frequency Domain

In this study we propose an automatic method for solving convolutive mixtures separation. The independent components are extracted by frequency domain analysis, where the convolutive model can be solved by instantaneous mixing model approach. The signals are reconstructed back in the observation space resolving the ICA model ambiguities. Simulations are carried out to test the validity of the p...

متن کامل

Blind source separation for convolutive mixtures based on the joint diagonalization of power spectral density matrices

This paper studies the problem of blind separation of convolutively mixed source signals on the basis of the joint diagonalization (JD) of power spectral density matrices (PSDMs) observed at the output of the separation system. Firstly, a general framework of JD-based blind source separation (BSS) is reviewed and summarized. Special emphasis is put on the separability conditions of sources and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001